Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

a__U11(tt, M, N) → a__U12(tt, M, N)
a__U12(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__plus(N, 0) → mark(N)
a__plus(N, s(M)) → a__U11(tt, M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

a__U11(tt, M, N) → a__U12(tt, M, N)
a__U12(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__plus(N, 0) → mark(N)
a__plus(N, s(M)) → a__U11(tt, M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

MARK(U12(X1, X2, X3)) → MARK(X1)
MARK(U11(X1, X2, X3)) → A__U11(mark(X1), X2, X3)
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(s(X)) → MARK(X)
A__U12(tt, M, N) → A__PLUS(mark(N), mark(M))
MARK(plus(X1, X2)) → MARK(X1)
A__PLUS(N, s(M)) → A__U11(tt, M, N)
MARK(plus(X1, X2)) → MARK(X2)
A__U11(tt, M, N) → A__U12(tt, M, N)
A__PLUS(N, 0) → MARK(N)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
A__U12(tt, M, N) → MARK(N)
A__U12(tt, M, N) → MARK(M)
MARK(U12(X1, X2, X3)) → A__U12(mark(X1), X2, X3)

The TRS R consists of the following rules:

a__U11(tt, M, N) → a__U12(tt, M, N)
a__U12(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__plus(N, 0) → mark(N)
a__plus(N, s(M)) → a__U11(tt, M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(U12(X1, X2, X3)) → MARK(X1)
MARK(U11(X1, X2, X3)) → A__U11(mark(X1), X2, X3)
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(s(X)) → MARK(X)
A__U12(tt, M, N) → A__PLUS(mark(N), mark(M))
MARK(plus(X1, X2)) → MARK(X1)
A__PLUS(N, s(M)) → A__U11(tt, M, N)
MARK(plus(X1, X2)) → MARK(X2)
A__U11(tt, M, N) → A__U12(tt, M, N)
A__PLUS(N, 0) → MARK(N)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
A__U12(tt, M, N) → MARK(N)
A__U12(tt, M, N) → MARK(M)
MARK(U12(X1, X2, X3)) → A__U12(mark(X1), X2, X3)

The TRS R consists of the following rules:

a__U11(tt, M, N) → a__U12(tt, M, N)
a__U12(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__plus(N, 0) → mark(N)
a__plus(N, s(M)) → a__U11(tt, M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(s(X)) → MARK(X)
A__U12(tt, M, N) → A__PLUS(mark(N), mark(M))
A__PLUS(N, s(M)) → A__U11(tt, M, N)
A__U11(tt, M, N) → A__U12(tt, M, N)
A__U12(tt, M, N) → MARK(N)
A__U12(tt, M, N) → MARK(M)
MARK(U12(X1, X2, X3)) → A__U12(mark(X1), X2, X3)
The remaining pairs can at least be oriented weakly.

MARK(U12(X1, X2, X3)) → MARK(X1)
MARK(U11(X1, X2, X3)) → A__U11(mark(X1), X2, X3)
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
A__PLUS(N, 0) → MARK(N)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
Used ordering: Polynomial interpretation [25,35]:

POL(plus(x1, x2)) = (4)x_1 + (4)x_2   
POL(A__PLUS(x1, x2)) = 3 + (4)x_1 + (4)x_2   
POL(U11(x1, x2, x3)) = 1 + (4)x_1 + (4)x_2 + (4)x_3   
POL(mark(x1)) = x_1   
POL(a__U12(x1, x2, x3)) = (4)x_1 + (4)x_2 + (4)x_3   
POL(0) = 0   
POL(a__plus(x1, x2)) = (4)x_1 + (4)x_2   
POL(A__U12(x1, x2, x3)) = (4)x_1 + (4)x_2 + (4)x_3   
POL(MARK(x1)) = 3 + x_1   
POL(A__U11(x1, x2, x3)) = 4 + (4)x_1 + (4)x_2 + (4)x_3   
POL(tt) = 1   
POL(a__U11(x1, x2, x3)) = 1 + (4)x_1 + (4)x_2 + (4)x_3   
POL(s(x1)) = 2 + x_1   
POL(U12(x1, x2, x3)) = (4)x_1 + (4)x_2 + (4)x_3   
The value of delta used in the strict ordering is 1.
The following usable rules [17] were oriented:

a__U11(tt, M, N) → a__U12(tt, M, N)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
a__plus(N, 0) → mark(N)
a__U12(tt, M, N) → s(a__plus(mark(N), mark(M)))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
a__plus(N, s(M)) → a__U11(tt, M, N)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(s(X)) → s(mark(X))
mark(tt) → tt
a__U11(X1, X2, X3) → U11(X1, X2, X3)
mark(0) → 0
a__plus(X1, X2) → plus(X1, X2)
a__U12(X1, X2, X3) → U12(X1, X2, X3)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPOrderProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

MARK(U12(X1, X2, X3)) → MARK(X1)
MARK(U11(X1, X2, X3)) → A__U11(mark(X1), X2, X3)
A__PLUS(N, 0) → MARK(N)
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
MARK(plus(X1, X2)) → MARK(X2)

The TRS R consists of the following rules:

a__U11(tt, M, N) → a__U12(tt, M, N)
a__U12(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__plus(N, 0) → mark(N)
a__plus(N, s(M)) → a__U11(tt, M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPOrderProof
        ↳ QDP
          ↳ DependencyGraphProof
QDP
              ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(U12(X1, X2, X3)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X1)
A__PLUS(N, 0) → MARK(N)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
MARK(plus(X1, X2)) → MARK(X2)

The TRS R consists of the following rules:

a__U11(tt, M, N) → a__U12(tt, M, N)
a__U12(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__plus(N, 0) → mark(N)
a__plus(N, s(M)) → a__U11(tt, M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(U12(X1, X2, X3)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X1)
A__PLUS(N, 0) → MARK(N)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
MARK(plus(X1, X2)) → MARK(X2)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(a__plus(x1, x2)) = 3 + (2)x_1 + (4)x_2   
POL(plus(x1, x2)) = 3 + (2)x_1 + (4)x_2   
POL(MARK(x1)) = 4 + (4)x_1   
POL(A__PLUS(x1, x2)) = (4)x_1 + (4)x_2   
POL(tt) = 1   
POL(a__U11(x1, x2, x3)) = 4 + (4)x_1 + x_3   
POL(U11(x1, x2, x3)) = 4 + (4)x_1 + x_3   
POL(mark(x1)) = (2)x_1   
POL(s(x1)) = 2   
POL(U12(x1, x2, x3)) = 2 + (2)x_1 + x_3   
POL(a__U12(x1, x2, x3)) = 3 + (2)x_1 + x_3   
POL(0) = 2   
The value of delta used in the strict ordering is 4.
The following usable rules [17] were oriented:

mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
a__plus(N, 0) → mark(N)
a__U12(tt, M, N) → s(a__plus(mark(N), mark(M)))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
a__plus(N, s(M)) → a__U11(tt, M, N)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(s(X)) → s(mark(X))
mark(tt) → tt
a__U11(X1, X2, X3) → U11(X1, X2, X3)
mark(0) → 0
a__plus(X1, X2) → plus(X1, X2)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U11(tt, M, N) → a__U12(tt, M, N)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPOrderProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ QDPOrderProof
QDP
                  ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

a__U11(tt, M, N) → a__U12(tt, M, N)
a__U12(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__plus(N, 0) → mark(N)
a__plus(N, s(M)) → a__U11(tt, M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.